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CIRCULANT PRECONDITIONERS FOR TOEPLITZ 
MATRICES WITH POSITIVE CONTINUOUS 

GENERATING FUNCTIONS 

RAYMOND H. CHAN AND MAN-CHUNG YEUNG 

ABSTRACT. We consider the solution of n-by-n Toeplitz systems Anx = b by 
the preconditioned conjugate gradient method. The preconditioner Cn is the 
circulant matrix that minimizes IIBn - A, IIF over all circulant matrices Bn . 
We show that if the generating function f is a positive 2Xr-periodic continu- 
ous function, then the spectrum of the preconditioned system C1- An will be 
clustered around one. In particular, if the preconditioned conjugate gradient 
method is applied to solve the preconditioned system, the convergence rate is 
superlinear. 

1. INTRODUCTION 

In this paper, we discuss the solution of Toeplitz systems Anx = b by the 
preconditioned conjugate gradient method. The idea of using the method with 
circulant preconditioners for solving symmetric positive definite Toeplitz sys- 
tems was first proposed by Strang [ 1 1]. The number of operations per iteration 
is O(n log n) as circulant systems can be solved efficiently by the Fast Fourier 
Transform and the matrix-vector multiplication A~x can also be computed 
by Fast Fourier Transform by first embedding An into a 2n-by-2n circulant 
matrix. 

Several other circulant preconditioners have been proposed and analyzed 
since then; see for instance, R. Chan and Strang [1], R. Chan [2, 3], R. Chan, 
Jin, and Yeung [5], T. Chan [6], T. Ku and Kuo [9], and E. Tyrtyshnikov [12]. 
It has been shown in these papers that if the diagonals of the Toeplitz matrix 
An are Fourier coefficients of a positive function in the Wiener class, then the 
spectrum of the preconditioned system will be clustered around one. It follows 
that the preconditioned conjugate gradient method, when applied to solve the 
preconditioned system, converges superlinearly. Hence the number of itera- 
tions required for convergence is independent of the size of the matrix An . In 
particular, the system AnX = b can be solved in O(n log n) operations. 

It has also been proved in R. Chan [3] and R. Chan, Jin, and Yeung [5] 
that, under the same Wiener class assumption, the preconditioned systems with 
preconditioners proposed by either R. Chan [3], T. Chan [6], Strang [11], or 
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Tyrtyshnikov [121 have spectra that are asymptotically the same. In particular, 
all these preconditioned systems converge at the same rate for large n. How- 
ever, Tyrtyshnikov [12] showed that for general positive definite Toeplitz matrix 
An, the corresponding T. Chan's and Tyrtyshnikov's preconditioners are also 
positive definite, but R. Chan's and Strang's preconditioners are in general not. 
We note that it requires 6n log n + 0(n) operations to generate Tyrtyshnikov's 
preconditioner (see R. Chan, Jin, and Yeung [4]), but only 3n/2 operations 
to form T. Chan's preconditioner. Thus T. Chan's preconditioner is the best 
choice for Toeplitz systems that satisfy the Wiener class assumption. In the 
following, we therefore only consider T. Chan's preconditioner. 

The main result in this paper is to extend the above-mentioned superlinear 
convergence result from the Wiener class of functions to the class of 27r-periodic 
continuous functions. More precisely, we will show that if the diagonals of An 
are Fourier coefficients of a positive 27r-periodic continuous function, and if 
Cn is the corresponding T. Chan's preconditioner for An, then the spectrum of 
Cn- An will be clustered around one and the preconditioned system converges 
superlinearly. The outline of the paper is as follows. In ?2, we discuss some of 
the properties of the spectra of An and Cn . In ?3, Jackson's formula from ap- 
proximation theory is introduced and used to derive our main theorem. Finally, 
numerical examples are given in ?4. 

2. THE SPECTRA OF Cn AND An 

For simplicity, we denote by W2,, the Banach space of all 27r-periodic con- 
tinuous real-valued functions equipped with the supremum norm K. For 
all f E F2, , let 

ak(f) y f(O)e-ikO dO, k = O. , ?2**, 

be the Fourier coefficients of f . Since f is real-valued, a-k = ak for all inte- 
gers k . Let An (f) be the n-by-n Hermitian Toeplitz matrix with the (j, k)th 
entry given by ajkk(f). The function f is called the generating function of 
the matrices An(f). The following lemma gives the relation between f and 
the spectrum a(An(f)) of An(f) . The proof is given in Grenander and Szego 
[8, p. 65]. 

Lemma 1. Let f E F27,, with the minimum and maximum values given by fmin 
and fmax, respectively. Then a(An (f)) c [fmin, fmax] . In particular, we have 

( 1) IIAn (f)I112 < El~f loo- 

Let Cn (f) be the n-by-n circulant preconditioner of An (f) as defined in 
T. Chan [6], i.e., Cn(f) is the minimizer of IIBn - An(f)IIF over all n-by-n 
circulant matrices Bn . We note that the diagonals Ck of Cn can be obtained by 
averaging the corresponding diagonals of An, with the diagonals of An being 
extended to length n by a wrap-around. More precisely, the Ck are given by 

(2) Ck = { ((n - k)ak + kak-n)/n, 0 < k < n, 
(2) ck~~~~i~ k 0 <-k < n. 

The following lemma gives the relationship between the spectra of Cn (f) and 
An(f), and its proof can be found in R. Chan, Jin, and Yeung [4]; see also 
Tyrtyshnikov [12]. 
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Lemma 2. Let A, be an arbitrary n-by-n Hermitian matrix and Cn be the 
optimal preconditioner given in (2). Then Cn is Hermitian and 

).min(An) < )Amin(Cn) < Amax(Cn) < )Amax(An), 
where Amax(G) and Amin(.) denote the largest and the smallest eigenvalues respec- 
tively. In particular, if An is positive definite, then Cn is also positive definite. 

Combining Lemmas 1 and 2, we have the following immediate corollary. 

Corollary 1. Let f E F2~,; then o (Cn(f)) C [fmin, fmia . In particular, we have 

(3) ||Cn(f)I12 < Ilflloo- 
Moreover, if f is positive, then for all n > 0, An (f) and C" (f) are positive 
definite and C" (f) and Cn I(f) are uniformly bounded in the 12-norm. 

The proof of the next lemma is given in R. Chan [3]. It basically states 
that the spectrum of An (f) - Cn (f) is clustered around zero if f is in the 
Wiener class. We remark that a function f is in the Wiener class if its Fourier 
coefficients are absolutely summable, i.e., 

00 

E Iak(f) <00. 
k=-oo 

Lemma 3. Let f be a function in the Wiener class; then for all e > 0, there exist 
N, M > 0 such tharfor all n > N, at most M eigenvalues of A"(f) - Cn(f) 
have absolute value larger than e. 

The main result of this paper is to extend the result in Lemma 3 from the 
Wiener class of functions to 2,. We first note that if f is in the Wiener class, 
then f E 2,, . In fact, if the Fourier coefficients of f are absolutely summable, 
then the Fourier series of f is a well-defined function in T2,. Moreover, by the 
Weierstrass test (see Rudin [10, p. 148]), this Fourier series converges uniformly 
to f on [-Xr, 7r]. Hence, f itself must be in 2, On the other hand, the 
Hardy-Littlewood series given by 

(4) H(6) 
el 0 

{kiog ikk + e-iklogk e-6 } 

is a classical example of a function which is in 92X but not in the Wiener class 
(see Zygmund [14, p. 197]). Thus, the Wiener class of functions is a proper 
subset of &2X- 

3. THE SPECTRUM OF An (f) - Cn (f) 

The idea of our proof is to use the Weierstrass theorem to approximate any 
function in W2,, by trigonometric polynomials. However, in order to obtain 
more precise information on the distribution of the eigenvalues, we resort to a 
stronger form of the Weierstrass theorem, called the Jackson formula, which is 
given in Lemma 4 below, whose proof can be found in Cheney [7, p. 144]. We 
first denote the space of all nth-degree real trigonometric polynomials by 3,n , 
i.e., 

n= {E bkei I b-k = bk, VIkI < n}. 
tk=-n 
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Lemma 4. Let f E ?2, . Then for all n > O, 

inf IIf-PnIIoo < O( f; 4k) 
where w is the modulus of continuity of f, i.e., 

W (f; )_ sup If(O1)- f(02)1I 
101-021<? 

Since Can is a finite-dimensional subspace of the normed space F2, , the 
infimum of the continuous functional Jlf - *10 in Lemma 4 above is attained 
by some polynomials in 3n. In particular, we have the following corollary. 

Corollary 2. Let f E W2,,. Then for all n > 0, there exists a trigonometric 
polynomial Pn E On such that 

Ilf -Pnlloo <(f; nf1) 

The next theorem states that the spectrum of An(f) - Cn(f) is clustered 
around zero. We prove it by showing that An (f) - Cn (f) can be written as the 
sum of a low-rank matrix and a small-norm matrix. 

Theorem 1. Let f E F2, . Then for all e > 0, there exist N and M > 0 such 
that for all n > N, at most M eigenvalues of An (f) - Cn (f) have absolute 
values larger than e. 
Proof. Let f E F2~, . Then for any e > 0, there exists a a > 0 such that 

If(0i) - f(02)1 < e V01 - 021 < d. 

Let M = [7r/l1 ; then 

( M + 1 ) 
Hence, by Corollary 2, there is a trigonometric polynomial 

M 

PM(0) =E bkeikO 
k=--M 

with b-k = bk such that 

(5) Ilf -PMIIOO < (f; M+ ) < 8. 

For all n > 2M, we write 

(6) Cn(f)-An(f) = Cn (f-PM)-Anf(f-PM) + Cn(PM)-An(PM) 
= Cn(f -PM) -An(f -PM) + Wn + Un X 

where by (2) we see that Wn and Un are Hermitian Toeplitz matrices with the 
first row given by 

(7) ( --b_ . --b-m O . 

and 

(8) (0 0 n -M n- b, n M bj 
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respectively. It is clear from (8) that 

(9) rank U, <2M. 

We will show that the first three terms in the right-hand side of (6) are matrices 
of small norm. We note that by (1), (3), and (5), 

(10 ) II Cn(f -PM) -An ( -PM) 112 < II Cn(f-PM)112 + IlAn(f -PM) 112 
< If -PMI|OO + If -PMIloO < 28. 

It remains to estimate IIWn I2. For all Iki < M, we first note that 

IbkI = JPM(t)ektdt 

< L (PM(t) - f (t))eikt dt + | j f(t)e-iktdt 

< If -PMIIoo + fmax < ? + fax. 
Since Wn is Hermitian, we see from (7) that 

11 n 112 < 11 n Illo = 2 *(Jb. l + 2Ib2I + ** + nIbMI) 

<2*-*(1+2+ +M)(*+fmax) n 
1 

=-M(M + 1) (8 + fmax). n 
Therefore, if we let 

N=max{M(M + 1) (1 + fmax), 2M} 

=M(M+1)(1+f eax) = [l (l + 1) + fmax) 

then for all n > N, we have II Wn 112 < e. Thus, combining this estimate with 
(9) and (10), we see that for all n > N, Cn (f) - An (f) is the sum of a matrix 
of 12-norm less than 3e and a matrix of rank less than 2M. Hence by using 
the Cauchy interlace theorem (see, for instance, Wilkinson [13, p. 103]), we 
see that the matrix Cn (f) - An (f) has at most 2M eigenvalues with absolute 
values larger than 3e whenever n > N. 0 

If f is Lipschitz continuous, i.e., there exists an L such that 

If(0O)-f(02)I<LI|0-02I V01,02E[-7r,7r], 

then for all e > 0, we can choose our 3 as 3 = e/L. Hence, we have M = 

[L7rl1e and 

N= 
[+1 ([ke 1+1) (i f 

) 
Next we estimate the eigenvalues of Cn-1(f)An(f) - In, where In is the 

n-by-n identity matrix. Using Corollary 1, Theorem 1, and the fact that 

Cn- I(f)An(f )-In = Cn 
I 
(f)(An(f) -Cn(A ) 

we see that the spectrum of Cn- 1 (f)An (f) is clustered around one. In particular, 
we have the following corollary. 
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Corollary 3. Let f be a positive function in W2, . Then for all e > 0, there exist 
N and M > 0 such that for all n > N, at most M eigenvalues of the matrix 
Cn- (f)An (f) - In have absolute values larger than e. 

It follows easily from the above corollary that the conjugate gradient method, 
when applied to the preconditioned system Cn-IAn , converges superlinearly. 
More precisely, for all e > 0, there exists a constant c(e) > 0 such that the 
error vector eq at the qth iteration satisfies 

11eq 11 < C(C)gq Ileol11, 

where ixi12 = x*CnTl/2AnCn-l/2x (see R. Chan and Strang [1] for a proof). 
Thus, the number of iterations to achieve a fixed accuracy remains bounded 
as the matrix order n is increased. Since each iteration requires O(n log n) 
operations using the Fast Fourier Transform (see Strang [11]), the work of 
solving the equation Anx = b to a given accuracy 3 is c(f, 3)n log n, where 
c(f, 3) is another constant that depends only on f and 3. 

4. NUMERICAL RESULTS 

In this section, we test the convergence rate of the preconditioned systems 
with generating functions in W2,. A possible candidate is the Hardy-Littlewood 
series H(O) given by (4). However, we note that H(O) is not a positive function 
in [-7r, 7r]. In fact, we find numerically that when n = 512, the minimum of 
the function 

Hn(O) = {eik eikO + e-iklogk eikO} 
k=1 

is approximately equal to -4.146. Thus, we choose the function H(O) + 4.2 
as the generating function for our numerical experiments. Three circulant pre- 
conditioners are tested, namely T. Chan's preconditioner Cn with diagonals Ck 
given by (2), R. Chan's preconditioner Rn with diagonals rk given by 

rk_ ak + ak-n , 0 < k < n , 
k F-k rO < -k < n, 

TABLE 1 
Number of iterations for different systems 

n An Cn 1An Rn 'An Sn 1An 

1 6 1 3 8 8 8 

32 18 10 10 9 

64 27 1 1 9 9 

128 43 1 1 9 9, 

256 51 10 9 9 

512 58 9 9 9 
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FIGURE 1 
Spectra of the preconditioned systems for n = 32 

and Strang's preconditioner Sn with diagonals Sk given by 
(ak 0<<k<n/2, 

Sk ak-n, n/2 < k < n, 
(-ks I O< -k < n. 

The spectra of An, Cn-An, R-'An, and Sn 'An for n = 32 are presented in 
Figure 1. Table 1 shows the number of iterations required to make 1 rq 12/jro 12 < 
10-7, where rq is the residual vector after q iterations. The right-hand side b 
is the vector of all ones and the zero vector is our initial guess. The computations 
are done by using 8-byte arithmetic on a Vax 6420. We see that as n increases, 
the number of iterations increases for the original matrix An, while it stays 
almost the same for the preconditioned matrices. Moreover, all preconditioned 
systems converge at the same rate for large n. As for the time comparison, 
we report that for n = 512, it requires about 8.5 seconds to solve the original 
system and about 1.5 seconds to solve the preconditioned systems. Thus there 
is an increase in speed by a factor of about 5 to 6 when preconditioning is 
employed. 
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